Predictive Models to Aid in the Design of Membrane Systems for Organic Micropollutant Removal

Funding Agency:

WateReuse Foundation (WRF-06-009)

Principal Investigators:

- Dr. Jörg Drewes
- Dr. Chris Bellona
- Dr. Shankar Chellam
- Dr. Mark Eberhart

Students Participating:

- Matt Sonnenberg
- Travis Jones

Start date: August 2008

End Date: May 2011

Project Objectives

- Evaluate current molecular modeling methods and employ molecular modeling techniques to determine reliable and accurate solute descriptors that can be employed for quantitative structure property relationship (QSPR) model development
- Develop and optimize modeling strategies that can be used for the prediction of organic micropollutant removal by NF and RO membranes
- Evaluate the efficiency of full-scale organic micropollutants removal and successfully predict the removal rates with developed model(s)

Methodology

- Three bench-scale flat sheet membrane units are in place to perform removal studies of a large set of organic contaminants
- Molecular Modeling Software is employed to generate descriptor values for the organic contaminants
- Statistical analysis of removal data by principle component analysis (PCA) and self-organized maps (SOM) will indicate molecular descriptors that may contribute to differences in removal trends among organic contaminants
- Descriptors identified during PCA and SOM will be incorporated in modeling strategies used during the study

